Chromatin remodeler ALC1 prevents replication-fork collapse by slowing fork progression
نویسندگان
چکیده
منابع مشابه
Chromatin remodeler ALC1 prevents replication-fork collapse by slowing fork progression
ALC1 (amplified in liver cancer 1), an SNF2 superfamily chromatin-remodeling factor also known as CHD1L (chromodomain helicase/ATPase DNA binding protein 1-like), is implicated in base-excision repair, where PARP (Poly(ADP-ribose) polymerase) mediated Poly(ADP-ribose) signaling facilitates the recruitment of this protein to damage sites. We here demonstrate the critical role played by ALC1 in t...
متن کاملChromatin assembly controls replication fork stability.
During DNA replication, the advance of replication forks is tightly connected with chromatin assembly, a process that can be impaired by the partial depletion of histone H4 leading to recombinogenic DNA damage. Here, we show that the partial depletion of H4 is rapidly followed by the collapse of unperturbed and stalled replication forks, even though the S-phase checkpoints remain functional. Th...
متن کاملPreserving the Replication Fork in Response to Nucleotide Starvation: Evading the Replication Fork Collapse Point
Replication fork progression is blocked by a variety impediments including DNA damage, aberrant DNA structures, or nucleotide depletion [1-3]. The response to replication fork stalling varies according the type of replication inhibition, the number of stalled forks and the duration of the treatment [3-7]. Stalled replication forks are at increased risk for DNA damage, which can lead to mutation...
متن کاملChk1 promotes replication fork progression by controlling replication initiation.
DNA replication starts at initiation sites termed replication origins. Metazoan cells contain many more potential origins than are activated (fired) during each S phase. Origin activation is controlled by the ATR checkpoint kinase and its downstream effector kinase Chk1, which suppresses origin firing in response to replication blocks and during normal S phase by inhibiting the cyclin-dependent...
متن کاملSeparase prevents genomic instability by controlling replication fork speed
Proper chromosome segregation is crucial for preserving genomic integrity, and errors in this process cause chromosome mis-segregation, which may contribute to cancer development. Sister chromatid separation is triggered by Separase, an evolutionary conserved protease that cleaves the cohesin complex, allowing the dissolution of sister chromatid cohesion. Here we provide evidence that Separase ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: PLOS ONE
سال: 2018
ISSN: 1932-6203
DOI: 10.1371/journal.pone.0192421